

MICRO FRONTEND DEVELOPER
GUIDE

CAN 7.0

JULY 28, 2023
AVANSEUS TECHNOLOGY PVT. LTD.

P a g e | 1

Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

REVISION HISTORY

Version Date
Change

Description
Created by Updated by Reviewed by

V 1.0 July 2023 Beta Release
Sarikya /
Hemanth

Raksha Chiranjib

P a g e | 2

Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

Table of Contents
Introduction .. 3

Advantages of Microfrontend Architecture .. 3

Procedure to Create Remote Module in CAN ... 3

Stage-1: Add Functionalities from PES ... 3

Stage-2: Creating React Project and Integrating with Webpack ... 4

Stage-3: Prerequisites for Integration with Host Module ... 6

Optional Steps based on the developer needs.. 7

Integration with Host Module (CAN) .. 8

Resources ... 10

JSPs to be copied .. 10

index.jsp ... 10

error.jsp .. 11

Webpack Integration .. 12

Profiles ... 18

P a g e | 3

Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

Introduction

MicroFrontend is a type of architecture in which a single monolith web application is divided into

different micro-frontend modules. Wherein, each module can use its own technology stack (for

example, one remote module can have Java with React, another module can have Python with

Angular and so on) and later can be combined with main host module using webpack integrated with

a plugin called ModuleFederationPlugin.

Advantages of Microfrontend Architecture

The advantages of using Micro Frontend architecture are as follows:

➢ To integrate multiple modules with different code bases. For example, one remote module

can have java with react and another module can have python with angular and so on.

➢ Multiple teams can work on different remote modules with different technology stack that is

integrated with the host module.

➢ Development and deployment is faster when multiple teams work simultaneously on different

modules.

➢ Maintainability becomes easier as they follow divide and conquer approach unlike the

monolithic applications.

➢ It helps in continuous deployment and testing of individual modules.

Procedure to Create Remote Module in CAN

This section is divided into three stages:

1. Add Functionalities from PES.

2. Creating react project and integrating with Webpack.

3. Prerequisites for integration with host module.

Stage-1: Add Functionalities from PES

The remote module which we are about to create will not have any dependencies on the PES-web

module which earlier used to provide with some generic functionalities like Internationalization, Filters,

Servlet context, and many more. Hence, we selectively choose some of the required functionalities

that needs to be incorporated with the remote module in this section. Follow the steps in the given

sequence to integrate the minimum required functionalities.

1. Create a maven project with “Core” and “Web” as the submodules under the remote module

and add the required dependencies in their respective pom.xml file.

2. The backend code (usually Java) should be placed under the “Core” submodule and the front-

end code (usually React) should be placed under the “Web” submodule.

3. Create a directory named “resources” in the remote module (<remote-

web>/src/main/resources). Add the necessary resources inside it like classpath.properties,

application.properties, log4j.properties, mongo-quartz.properties, messages_en.properties,

etc.

4. Create a directory named “webapp” in the remote module (<remote-web>/src/main/webapp).

Add the following files to your remote module’s webapps directory by copying them from PES

module.

a. react/index.html

b. js/request.js: remove the addition of flowExecutionKey in the form headers.

c. js/error.js.

d. images/Error.svg.

e. images/favicon.png and images/favicon.ico

f. WEB-INF/servlet-context.xml

g. WEB-INF/web.xml (add only needed configurations here)

h. WEB-INF/spring-config/applicationSpring<remote>.xml (add the necessary beans

here) and WEB-INF/spring-config/applicationSpringGlobal.xml

5. Create a file named “index.jsp” in your remote module’s webapps directory (<remote-

web>/src/main/webapps) and paste the contents from index.jsp.

P a g e | 4

Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

6. Create a file named “error.jsp” in <remote-web>/src/main/webapp/jsp/ directory and paste the

contents from error.jsp .

NOTE: If the above mentioned 6 steps of stage-1 is followed correctly, then your remote module’s

project structure of web project and its webapp directory contents will look like the below project

structure:

Stage-2: Creating React Project and Integrating with Webpack

1. Create a react application named “react-app” in <remote-web>/src/main. The command to

create the react application is:

npx create-react-app react-app

2. A folder named “react-app” with the react application files is created in <remote-

web>/src/main/. Rename this folder to “react”.

3. Create 2 webpack configuration files in <remote-web>/src/main/react:

a. One for production needs- webpack.prod.js (used for taking the build for

production).

b. Another for development needs- webpack.dev.js (used for taking the build for

development purposes).

NOTE: The contents of these two files along with the explanation can be found in a section

named “Webpack Integration” in the later part of this document.

4. In package.json file of the remote module’s react project, add the below mentioned

configurations in dev-dependencies and scripts section respectively.

Dev-dependencies:

 "@babel/core": "^7.22.5",
 "@babel/plugin-proposal-private-property-in-object": "^7.21.11",

 "@babel/preset-env": "^7.22.5",
 "@babel/preset-react": "^7.22.5"

P a g e | 5

Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

 "ajv": "^8.12.0",
 "babel-loader": "^8.0.4",
 "css-loader": "^6.7.3",
 "eslint-webpack-plugin": "^4.0.1",
 "html-webpack-plugin": "^5.5.0",
 "webpack": "^5.76.3",
 "webpack-cli": "^5.0.1",
 "webpack-dev-server": "^4.13.1"

Scripts:

 "start": "webpack serve",

 "build": "webpack build --config webpack.prod.js",

 "dev-build": "webpack build --config webpack.dev.js"

The production and development builds can be taken by executing the following commands in

<remote-web>/src/main/react folder.

a. npm run build: It is used to take build for production which takes the webpack

configuration present in webpack.prod.js which is configured in build using

--config parameter.

b. npm run dev-build: It is used to take build for development which takes the webpack

configuration present in webpack.dev.js which is configured in the dev-build using

--config parameter.

5. Add the below mentioned files to “<remote-web>/src/main/react/src” folder by copying them

from “CAN-web/src/main/react/src” directory. These files are required to redirect user to error

page in the event of exception.

a. components/error/Error.js

b. css/error/error.module.css

c. images/error/Error.svg

In the theme.js of your remote module wrap the react components inside Error component by

importing the above copied files (Please refer PCPTheme.js file). Also, ensure that remote

module’s theme.js should not be exposed as a component to Host module.

Copy the above three files under the same sub-directories as shown in the below image.

(Sub-directories must be created manually before pasting the required files)

6. <Remote>-web pom.xml: Add the content of profiles provided in the “Profiles” section

provided in the later part of the document in the “<remote-web>” pom.xml file.

P a g e | 6

Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

Stage-3: Prerequisites for Integration with Host Module

The prerequisites that the remote module must satisfy before integrating itself with the host module

(CAN) are:

1. When the Host module (Example: CAN) integrated with Remote module (Example: PCP) is

accessed in the browser, the below mentioned calls occur from host module to the remote

module.

• moduleEntry.js: The URL to load the moduleEntry.js is provided in the remotes

section of ModuleFederationPlugin of the webpack files of host module.

• bundle.js: The URL to load the bundle.js is provided in the output section of

ModuleFederationPlugin of the webpack files of remote module.

• Axios calls that occur from remote module.

All the above-mentioned calls are made from host module to the remote module. A unique

prefix must be attached to each of the above calls, so that all these calls can be identified as

remote module calls and bypass the filters present in the host module (like

DoubleSubmitFilter, XSS Filter, Validation Filter etc.) and redirect to the remote module.

Syntax of the URL paths of the above-mentioned calls should be given as:

• moduleEntry.js:

<remoteModuleName>@<uniqueRemoteModulePrefix>/<remoteModuleName>Modu

leEntry/react/

 Example: PCP@PCPRemoteModule/PCPModuleEntry/react/

• bundle.js:

 <uniqueRemoteModulePrefix>/<remoteModuleName>Bundle/react/

 Example: PCPRemoteModule/PCPBundle/react/

• Each axios call in remote module must be prefixed with

<uniqueRemoteModuleAxiosPrefix>

 Example: PCPModuleAxiosRequest

NOTE:

1. For the moduleEntry.js and bundle.js calls to bypass the DoubleSubmitFilter, add the

/<uniqueRemoteModulePrefix> in the excludedUrls of DoubleSubmitFilter in web.xml of

PES-web module. Example for adding the URL is as shown below.

<filter>
 <filter-name>csrfFilter</filter-name>
 <filter-class>com.avanseus.security.csrf.DoubleSubmitFilter</filter-class>
 <init-param>
 <param-name>excludedUrls</param-name>
 <param-
value>/index.jsp,/react,/jsp,/dialog,/js,/css,/images,/fonts,/CanPredictedFaultsProvider,/PC
PRemoteModule,/PCPServiceProvider</param-value>
 </init-param>
</filter>
<filter-mapping>
 <filter-name>csrfFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

The moduleEntry.js and bundle.js calls are of type “GET” request method. For these to

surpass the ValidationFilter add the /<uniqueRemoteModulePrefix>/ in

httpGetAllowedRequestURL file in CAN-web/src/main/resources.

Example: /PCPRemoteModule/

P a g e | 7

Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

2. Webpack does not support eager loading. Create a file named bootstrap.js (inside the folder

<remote-web>/src/main/react/src/), move the code present in index.js (<remote-

web>/src/main/react/src/) into bootstrap.js and dynamically import bootstrap.js into index.js

file. Hence, the content of index.js will be as shown below.

import("./bootstrap");

3. To check the availability of remote modules functionalities, it can be accessed through the

window object.

Syntax:

window.[remoteModuleName]

Example: window.PCP

4. The key value pairs used for internationalisation must be present in both remote and host

module message properties file when integrated with the host module.

Optional Steps based on the developer needs

1. When remote module make API calls to the host module to leverage some generic

functionalities (like dataload, filter configuration etc.,) that are present in Host module, it must

bypass the filters provided in the host module by adding a custom URL pattern like

“/<remoteModuleName>ServiceProvider” in the excludedUrls inside web.xml of PES-web

module (PES-web/src/main/webapp/WEB-INF/).

<filter>
 <filter-name>csrfFilter</filter-name>
 <filter-class>com.avanseus.security.csrf.DoubleSubmitFilter</filter-class>
 <init-param>
 <param-name>excludedUrls</param-name>
 <param-
value>/index.jsp,/react,/jsp,/dialog,/js,/css,/images,/fonts,/CanPredictedFaultsProvider,/PC
PRemoteModule,/PCPServiceProvider</param-value>
 </init-param>
</filter>
<filter-mapping>
 <filter-name>csrfFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

A security:intercept-url should also be added in applicationSpringKeycloak.xml as shown

below in PES-web module (PES-web/src/main/webapp/WEB-INF/spring-config/).

<security:intercept-url pattern="/PCPServiceProvider/**" access="permitAll()"/>

2. If redux is used in the remote module, register the store in the component that is exposed to

host module.

3. If the remote module needs to access “username” of the logged in person, it can be accessed

in the remote module as shown below.

URLDecoder.decode(httpServletRequest.getHeader("userName"), "UTF-8")

P a g e | 8

Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

Integration with Host Module (CAN)

To integrate the Remote module (Ex: PCP, RCA) with the Host module (CAN) follow the steps below.

1. Add the remote module’s moduleEntry URL in the remotes section of

ModuleFederationPlugin of webpack.dev.js and webpack.prod.js of the host module.

Syntax:

<Placeholder>:`<remoteModuleName>@<remoteModuleName>ModuleEntry/react/`

 Example:

a. PCPModule: `PCP@PCPRemoteModule/PCPModuleEntry/react/`,

b. RCAModule: `RCA@RCARemoteModule/RCAModuleEntry/react/`

2. Modify the json files that are used to render the navigation tab contents in host module (like

user-header.json, administrator-header.json or adaption-menu.json). Add your remote module

name in “moduleName” and set “isRemoteModule” to true where the remote module is

present. If the required remote module json is not present, add new json in the respective file

with the above-mentioned configurations.

For example:

{
 "backgroundImage": "performance-counter-icon",
 "text": "Performance Prediction",
 "url": "performance-counter",
 "isAdminModule":true,
 "isCircleManagerModule":true,
 "isZoneLeadModule":true,
 "moduleName": "PCP",
 "isRemoteModule": true
}

3. Import the remote module in the required component of the host module. As webpack

supports lazy loading, the import must be provided with the help of React.lazy.

Syntax:

const <moduleName> = React.lazy(() =>

import(“<Placeholder>/<exposedComponentPlaceholderFromRemoteModule>”))

Example:

const PerformancePrediction = React.lazy(() => import("PCPModule/PCP"));

4. In the render() function of the component where the remote module is imported, the imported

remote module must be enclosed in <React.Suspense fallback={null}></React.Suspense>.

<React.Suspense> supports lazy loading of the remote module component in the host

module. Fallback attribute shows an alternative component until the remote module

component is loaded (like a spinner etc.).

 Example:

P a g e | 9

Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

<React.Suspense fallback={null}>
 {this.state.moduleComponent}
</React.Suspense>

5. Add the config entries, avanseus.app.<remoteModule>.host and

avanseus.app.<remoteModule>.domain with host and domain values respectively in

config.properties in the tomcat where the remote module is deployed.

6. In MicroServiceFilter.java of PES-core module, add a condition in doFilter() method to forward

(or proxy) all the requests of your remote module from host module to remote module as

shown below.

else if(servletPath.startsWith("/<uniqueRemoteModulePrefix>") ||

servletPath.startsWith("/<uniqueRemoteModuleAxiosPrefix>")) {

 RemoteModuleRouter remoteModuleRouter = new RemoteModuleRouter();

remoteModuleRouter.routeToRemoteModule("<remoteModuleName>","<remoteModul

eHostConfigkey>", prefix, moduleEntryFileName, httpServletRequest,

httpServletResponse);

 return;

}

7. Take the build of PES, host and remote module and deploy the host and remote modules in

the same tomcat for local development environment.

NOTE: Now Host and Remote module’s build can be taken in two different ways.

a. mvn clean install –P development

b. mvn clean install –P production (or just mvn clean install)

Refer to Profiles sections for more details.

P a g e | 10

Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

Resources

JSPs to be copied

index.jsp

<?xml version="1.0" encoding="UTF-8" ?>
<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<%@ page import="java.util.Locale" %>
<%@ page import="com.avanseus.i18n.locale.Language" %>
<%@ page import="com.avanseus.config.Config" %>

<%
 Config conf = Config.getInstance();
 String appName = conf.getConfig("avanseus.app.name");
 Locale locale = request.getLocale();
 Language language = Language.getDisplayLanguage(locale.getDisplayLanguage());
%>
<head>
 <link rel="shortcut icon" href="images/favicon.png"/>
 <title><%=appName%></title>
 <script src="js/language.js"></script>
 <script src="js/request.js"></script>
 <script type="text/javascript">
 function getLabel(key) {
 var label = <%=language.getCode()%>[key];
 if (label == null || label == undefined) {
 label = "** Text not found **";
 }
 return label;
 }
 </script>
</head>
<%@include file="react/index.html"%>
</html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

P a g e | 11

Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

error.jsp

<%@ page import="com.avanseus.config.Config" %>
<%@ page import="java.util.Locale" %>
<%@ page import="com.avanseus.i18n.locale.Language" %>
<%@ page import="com.avanseus.i18n.resource.bundle.ResourceBundle" %>
<%@ page import="com.avanseus.logger.ApplicationLogger" %>
<%@ page import="com.avanseus.exception.ApplicationException" %>
<%@ page import="com.avanseus.exception.code.impl.GenericErrorCode" %>

<%
 Config conf = Config.getInstance();
 String protocol = conf.getConfig("avanseus.protocol");
 String domain = conf.getConfig("avanseus.app.domain");
 String cas = conf.getConfig("avanseus.app.cas.domain");
 String appName = conf.getConfig("avanseus.app.name");
 Locale locale = request.getLocale();
 Language language = Language.getDisplayLanguage(locale.getDisplayLanguage());
 ResourceBundle resourceBundle = ResourceBundle.getInstance();
 String rootPath = protocol + "://" + domain + "/" + appName;
 Throwable throwable = (Throwable) request.getAttribute("javax.servlet.error.exception");
 Integer statusCode = (Integer) request.getAttribute("javax.servlet.error.status_code");
 String servletName = (String) request.getAttribute("javax.servlet.error.servlet_name");
 if (servletName == null) servletName = "Unknown";
 String requestUri = (String) request.getAttribute("javax.servlet.error.request_uri");
 if (requestUri == null) requestUri = "Unknown";
 ApplicationLogger logger = ApplicationLogger.getLogger(requestUri);
 ApplicationException applicationException;
 if (throwable != null) {
 applicationException = new
ApplicationException(GenericErrorCode.GEN_JSP_EXCEPTION, throwable);
 logger.error(applicationException);
 }
 boolean restrictedAccess = (request.getAttribute("RESTRICETD_ACSESS") != null) ?
true : false;
 if (!restrictedAccess) {
%>
<link rel="stylesheet" type="text/css" href="/<%=appName%>/css/error.css"/>
<script type="text/javascript" src="/<%=appName%>/js/error.js"></script>
<div id="parentErrorDiv">
 <div id="errorBorderDiv">
 <div id="errorBorder">
 <div id="errorDiv">
 <div id="errorImage">
 <image src="/<%=appName%>/images/Error.svg" alt="NOT
FOUND"></image>
 </div>
 <div id="oops"><%=resourceBundle.getLabel("error.oops", language)%>
 </div>
 <div class="description">
 <div
class="description"><%=resourceBundle.getLabel("error.defaultErrorMessage",
language)%>
 </div>
 </div>
 </div>
 </div>
 </div>
</div>

P a g e | 12

Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

<%
} else {
%>
<div class="restrictedAccessParentDiv" style="width:100%; height:100vh; background-
color: whitesmoke">
 <center>
 <div style="display: table-cell; width: 500px; height: 500px; vertical-align: middle; text-
align: center;">
 <pre><%=resourceBundle.getLabel("error.restrictedAccess", language)%>
 <a
href="javascript:redirect('<%=protocol%>://<%=cas%>/CAS/logout')"><%=resourceBundle.
getLabel("error.restrictedAccess.click", language)%>
<%=resourceBundle.getLabel("error.restrictedAccess.logout", language)%>
 </pre>
 </div>
 </center>
</div>
<%
 }
%>

Webpack Integration

Webpack.prod.js

P a g e | 13

Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

const HtmlWebpackPlugin = require("html-webpack-plugin");
const ModuleFederationPlugin = require("webpack/lib/container/ModuleFederationPlugin");
const ESLintPlugin = require('eslint-webpack-plugin');
const path = require("path");
const { dependencies } = require("./package.json");

console.log("ENTERING PRODUCTION BUILD")
module.exports = {
 entry: "./src/index",
 mode: "production",
 devtool: 'source-map',
 output: {
 path: path.resolve(__dirname, 'build'),
 publicPath: "PCPRemoteModule/PCPBundle/react/",
 filename: '[name].[contenthash].js',

 clean: true

 },
 module: {
 rules: [
 {
 test: /\.(js|jsx)?$/,
 exclude: /node_modules/,
 use: [
 {
 loader: "babel-loader",
 options: {
 presets: [
 "@babel/preset-env",
 "@babel/preset-react"
]
 }
 }
]
 },
 {
 test: /\.css$/i,
 exclude: /\.module\.css$/i,
 use: ['style-loader', 'css-loader']
 },
 {
 test: /\.module\.css$/i,
 use: [
 'style-loader',
 {
 loader: 'css-loader',
 options: {
 modules : {
 localIdentName : "PCP__[name]_[local]__[hash:base64:5]"
 }
 }
 }
]
 },
 {
 test: /\.(gif|png|jpe?g|svg)$/,
 type: 'asset/resource'
 }
]
 },

P a g e | 14

Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

 plugins: [
 new HtmlWebpackPlugin({
 template: "./public/index.html"
 }),
 new ModuleFederationPlugin({
 name: "PCP",
 filename: "moduleEntry.js",
 exposes: {
 "./PCP": "./src/components/performancePrediction/performancePrediction",
 "./KPIManagement": "./src/components/settings/kPIManagement/kPIManagement",
 "./AlarmToKPICorrelation":
"./src/components/settings/alarmToKPICorrelationConfiguration/alarmToKPICorrelation"
 },
 shared: {
 ...dependencies,
 react: {
 singleton: true,
 requiredVersion: dependencies["react"]
 },
 "react-dom": {
 singleton: true,
 requiredVersion: dependencies["react-dom"]
 }
 }
 }),
 new ESLintPlugin()
],
 resolve: {
 extensions: [".js", ".jsx"]
 },
 target: "web"
};

Webpack.dev.js

const HtmlWebpackPlugin = require("html-webpack-plugin");
const ModuleFederationPlugin = require("webpack/lib/container/ModuleFederationPlugin");
const ESLintPlugin = require('eslint-webpack-plugin');
const path = require("path");
const { dependencies } = require("./package.json");

console.log("ENTERING DEVELOPMENT BUILD")
module.exports = {
 entry: "./src/index",
 mode: "development",
 devtool: 'source-map',
 output: {
 path: path.resolve(__dirname, 'build'),
 publicPath: "/PCP/react/",
 filename: '[name].[contenthash].js',

 clean: true
 },
 module: {
 rules: [
 {

P a g e | 15

Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

 test: /\.(js|jsx)?$/,
 exclude: /node_modules/,
 use: [
 {
 loader: "babel-loader",
 options: {
 presets: [
 "@babel/preset-env",
 "@babel/preset-react"
]
 }
 }
]
 },
 {

 test: /\.css$/i,
 exclude: /\.module\.css$/i,
 use: ['style-loader', 'css-loader']
 },
 {
 test: /\.module\.css$/i,
 use: [
 'style-loader',
 {
 loader: 'css-loader',
 options: {
 modules : {
 localIdentName : "PCP__[name]_[local]__[hash:base64:5]"
 }
 }
 }
]
 },
 {
 test: /\.(gif|png|jpe?g|svg)$/,
 type: 'asset/resource'
 }
]
 },
 plugins: [
 new HtmlWebpackPlugin({
 template: "./public/index.html"
 }),
 new ModuleFederationPlugin({
 name: "PCP",
 filename: "moduleEntry.js",
 exposes: {
 "./PCP": "./src/components/performancePrediction/performancePrediction",
 "./KPIManagement": "./src/components/settings/kPIManagement/kPIManagement",
 "./AlarmToKPICorrelation":
"./src/components/settings/alarmToKPICorrelationConfiguration/alarmToKPICorrelation"
 },
 shared: {
 ...dependencies,
 react: {
 singleton: true,
 requiredVersion: dependencies["react"]
 },
 "react-dom": {
 singleton: true,

P a g e | 16

Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

 requiredVersion: dependencies["react-dom"]
 }
 }
 }),
 new ESLintPlugin()
],
 resolve: {
 extensions: [".js", ".jsx"]
 },
 target: "web"
};

The configurations provided in the webpack files are explained below.

entry: The path of entry file of the react application from where the execution starts, must be specified

here.

mode: The deployment mode must be specified here. It can be either production or development. By

default, Production is considered.

devtool: This option controls how the source-maps must be generated. This configuration has many

parameters that can be provided. Source-map is used to provide the uncompressed files in the

developer console so that it is easier for debugging purpose.

output: It is a Json entry where we can provide multiple parameters. In host and remote modules, we

are using four parameters namely path, publicPath, filename and clean.

1. Path is provided as path.resolve(__dirname, 'build') where __dirname resolves to the

current directory and followed by build directory. Hence, the above provided path resolves to:

 <remote>/<remote-web>/src/main/react/build

The files that are generated after the react build is completed are put in the above folder that

can be used for the deployment purpose.

2. PublicPath specifies the public URL of the output directory (bundle.js) when referenced in a

browser. It is the path where the bundle files (or output files) are present.

The publicPath is provided as:

<uniqueRemoteModulePrefix>/<remoteModuleName>Bundle/react/: in production. In this

case, the bundle.js call is sent to the host module that redirects it to the remote module.

 /<uniqueRemoteModulePrefix>/react/: in development. In this case, the bundle.js call is

sent directly to the remote module to load the output or the bundle.js files in the browser.

3. Filename is the filename of the output file. The top-level output key contains a set of options

instructing webpack on how and where it should output your bundles, assets, and anything

else you bundle or load with webpack. [contenthash] changes when the content of a particular

asset changes.

4. Clean is used to clean the build directory every time before the new assets is populated.

Module rules: It is an array of objects containing the rules to parse various types of files. The loaders

used to parse different types of files are listed below.

• For js and jsx files, babel-loader is used.

• For pure css files, css-loader and style-loader are used. The css module files are excluded

from parsing using the exclude attribute.

• For css modules, css-loader and style-loader are used but with different options.

localIdentName is used for naming conventions the classnames in the build.

• For images, type is provided as asset/resource that allows the parsing of image files during

the build.

P a g e | 17

Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

Plugins: An array of plugins are provided here.

• HtmlWebpackPlugin simplifies creation of HTML files to serve the webpack bundles. This is

especially useful for webpack bundles that include a hash in the filename that changes every

compilation.

• ESLintPlugin is used for emitting the es6 errors in javascript files during the build time.

• ModuleFederationPlugin allows a build to provide or consume modules with other

independent builds at runtime.

name: This is the name of the module.

filename: It is the name of the file which provides the access to that module.

exposes: This is a json that is provided in the remote module which contains the components that

needs to be exposed to the host module.

Syntax:

{

 “<exposedComponentPlaceholderFromRemoteModule>”: “<pathOfComponentTobeExposed>”

}

remotes: This is a json that is provided in the host module which contains the moduleEntry url of the

remote modules along with the name of the remote module.

Syntax:

{

 “<Placeholder>”: “<remoteModuleName>@ <remoteModuleName>ModuleEntry/react/”

}

shared: This is used to share the versions of the dependencies between the host and remote

modules.

resolve: It is used to configure how modules are resolved. Attempt to resolve these extensions in

order.

target: It instructs webpack to generate runtime code for a specific environment. Web is the default

configuration that compiles to usage in browser like environment.

Webpack.prod.js Webpack.dev.js

Mode is production. Mode is development.

Devtool is not provided. In this case, the files
are compressed and are not accessible in their
original form.

Devtool is provided as source-map. In this case,
the files are accessible in their original format
that makes it easy for debugging purpose during
the development phase.

Warnings are masked in the developer console
in production mode.

Warnings are present in the developer console
in development mode.

P a g e | 18

Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

Profiles

<profiles>
 <profile>
 <id>development</id>
 <build>
 <finalName>PCP</finalName>
 <plugins>
 <plugin>
 <groupId>org.jasig.mojo.jspc</groupId>
 <artifactId>jspc-maven-plugin</artifactId>
 <version>2.0.0</version>
 <executions>
 <execution>
 <phase>compile</phase>
 <goals>
 <goal>compile</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <sources>
 <directory>${basedir}/src/main/webapp</directory>
 <includes>
 <include>**/*.jsp</include>
 </includes>
 </sources>
 </configuration>
 <dependencies>
 <dependency>
 <groupId>org.jasig.mojo.jspc</groupId>
 <artifactId>jspc-compiler-tomcat8</artifactId>
 <version>2.0.2</version>
 </dependency>
 <dependency>
 <groupId>javax.servlet.jsp</groupId>
 <artifactId>jsp-api</artifactId>
 <version>2.1</version>
 </dependency>
 </dependencies>
 </plugin>

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-war-plugin</artifactId>
 <version>2.1.1</version>
 <configuration>
 <webResources>
 <resource>
 <targetPath>react</targetPath>
 <directory>${basedir}/src/main/react/build</directory>
 </resource>
 </webResources>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <version>1.3.2</version>
 <executions>

P a g e | 19

Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

 <execution>
 <id>npm run reinstall</id>
 <goals>
 <goal>exec</goal>
 </goals>
 <phase>compile</phase>
 <configuration>
 <executable>npm</executable>
 <arguments>
 <argument>run</argument>
 <argument>reinstall</argument>
 <argument>--prefix</argument>
 <argument>${basedir}/src/main/react/</argument>

 </arguments>
 </configuration>
 </execution>
 <execution>
 <id>npm run build</id>
 <goals>
 <goal>exec</goal>
 </goals>
 <phase>compile</phase>
 <configuration>
 <executable>npm</executable>
 <arguments>
 <argument>run</argument>
 <argument>dev-build</argument>
 <argument>--prefix</argument>
 <argument>${basedir}/src/main/react/</argument>

 </arguments>
 </configuration>
 </execution>
 </executions>

 <configuration>
 <environmentVariables>
 <CI>false</CI>

<NPM_CONFIG_PREFIX>${basedir}/src/main/react/npm</NPM_CONFIG_PREFIX>

<NPM_CONFIG_CACHE>${NPM_CONFIG_PREFIX}/cache</NPM_CONFIG_CACHE>
 <NPM_CONFIG_TMP>${project.build.directory}/npmtmp</NPM_CONFIG_TMP>
 </environmentVariables>
 </configuration>
 </plugin>
 </plugins>
 </build>
 </profile>
 <profile>
 <id>production</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <build>
 <finalName>PCP</finalName>
 <plugins>
 <plugin>

P a g e | 20

Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

 <groupId>org.jasig.mojo.jspc</groupId>
 <artifactId>jspc-maven-plugin</artifactId>
 <version>2.0.0</version>
 <executions>
 <execution>
 <phase>compile</phase>
 <goals>
 <goal>compile</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <sources>
 <directory>${basedir}/src/main/webapp</directory>
 <includes>
 <include>**/*.jsp</include>
 </includes>
 </sources>
 </configuration>
 <dependencies>
 <dependency>
 <groupId>org.jasig.mojo.jspc</groupId>
 <artifactId>jspc-compiler-tomcat8</artifactId>
 <version>2.0.2</version>
 </dependency>
 <dependency>
 <groupId>javax.servlet.jsp</groupId>
 <artifactId>jsp-api</artifactId>
 <version>2.1</version>
 </dependency>
 </dependencies>
 </plugin>

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-war-plugin</artifactId>
 <version>2.1.1</version>
 <configuration>
 <webResources>
 <resource>
 <targetPath>react</targetPath>
 <directory>${basedir}/src/main/react/build</directory>
 </resource>
 </webResources>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <version>1.3.2</version>
 <executions>

 <execution>
 <id>npm run reinstall</id>
 <goals>
 <goal>exec</goal>
 </goals>
 <phase>compile</phase>
 <configuration>
 <executable>npm</executable>

P a g e | 21

Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

 <arguments>
 <argument>run</argument>
 <argument>reinstall</argument>
 <argument>--prefix</argument>
 <argument>${basedir}/src/main/react/</argument>

 </arguments>
 </configuration>
 </execution>
 <execution>
 <id>npm run build</id>
 <goals>
 <goal>exec</goal>
 </goals>
 <phase>compile</phase>
 <configuration>
 <executable>npm</executable>
 <arguments>
 <argument>run</argument>
 <argument>build</argument>
 <argument>--prefix</argument>
 <argument>${basedir}/src/main/react/</argument>

 </arguments>
 </configuration>
 </execution>
 </executions>

 <configuration>
 <environmentVariables>
 <CI>false</CI>

<NPM_CONFIG_PREFIX>${basedir}/src/main/react/npm</NPM_CONFIG_PREFIX>

<NPM_CONFIG_CACHE>${NPM_CONFIG_PREFIX}/cache</NPM_CONFIG_CACHE>
 <NPM_CONFIG_TMP>${project.build.directory}/npmtmp</NPM_CONFIG_TMP>
 </environmentVariables>
 </configuration>
 </plugin>
 </plugins>
 </build>
 </profile>
</profiles>

It contains two profiles, with each profile containing id and build parameters. Consider either

development or production build by passing the profile id as parameter in mvn clean install.

One profile has the id as development and it is used to take the build for development purpose. It

internally uses npm run dev-build that takes the webpack configuration from webpack.dev.js.

The command for taking the development build of a module is:

mvn clean install -P development

Another profile has the id as production and it is used to take the build for production purpose. It

internally uses npm run build that takes the webpack configuration from webpack.prod.js. By default,

the active profile is production.

P a g e | 22

Copyright © 2023 Avanseus Holdings Pte. Ltd. All rights reserved.

The command for taking the production build of a module is:

mvn clean install -P production

or

mvn clean install

NOTE: This developer guide has elaborated the steps of creating a remote module. After the

successful creation of remote module, it is the responsibility of the developer to make it production

ready by creating necessary files like Docker image, Kubernetes services and Helm chart. Creation of

Helm chart and Docker image for a remote module is not included in this document.

	Introduction
	Advantages of Microfrontend Architecture

	Procedure to Create Remote Module in CAN
	Stage-1: Add Functionalities from PES
	Stage-2: Creating React Project and Integrating with Webpack
	Stage-3: Prerequisites for Integration with Host Module
	Optional Steps based on the developer needs

	Integration with Host Module (CAN)
	Resources
	JSPs to be copied
	index.jsp
	error.jsp

	Webpack Integration
	Profiles

