2,

CAN 5.5

Requirements Document

-«

APRIL 29, 2021
AVANSEUS TECHNOLOGIES PVT. LTD.

Table of Contents

BT 01T aTo] (oo 1= PP PPP PP

A.
B.

REGUITEMIENT TYPES ..ttt ettt e s st e e e b bt e e s ab et e e e sbe e e e eabb e e e annbeeeeanees

REQUIrEMENT PHIOTITIESeeiiieiiieiie ittt et s bt e s e e s abr e e e enbe e e e anees

REGUITEIMENTS ...ttt ettt e ettt oo e b e et e okttt e e h b et e o4 e ket e e e ea bt e e e o ket e e e s be e e e snbb et e e nbeeeesnnneeas

1.

2.

Kubernetes Based DEPIOYIMENTccoiiiiiiiiiie ittt sttt e e st e e e sabe e e e sbnreessaneeeeaa
Elasticstack Integration in OPENSKIfL ..o
(o To I ol o |10 o [PURRE TP PERTTO
Horizontal Pod AUtOSCAliNg — HPA ... e e e
Helm Charts for Easy INSTAlIAtIONoooiiiii e

Integration With ISTI0 SEIVICE MESHooi i

6.1. Service Mesh With ENVOY PrOXYccuuiiiiieiiiiiiiie ettt e e s e e e e s e st ae e e e e e e s anbe e e e e e e s annnraeeeaaeeannns

LSO A 11 g To = L o] g TN] o3 PRSP PPRRR

6.3. Peer AULhENtICAION POLICYuueiiiiiiiiiiiiie et ee e e e s e e e e e e st e e e e e e s s nnt e e e e e e e saannrnneeaeeesanns

Integration with Monitoring Softwares (Kiali, Prometheus and Grafana)...........ccccccceveeviiiiieeee e,

7.1, Integration WIth KIAlicccuviiiie e r e e e e e s e e e e e s et et e e e e e e s e sanrnneeaaeeannns

7.2. Integration With PromMethEUS..........oo e e e e e e e e s e ee e e e e annns

7.3. Integration With GIafan@...........c.eeii ittt e s nbb e e e e sabeeeeans

9.

10.

11.

12.

13.

14.

15.

16.

SEIVICENOW INTEGTALIONeeeieiiiiie ettt ettt e ettt e e s it et e s et e e e e aabbe e e enbeeeeenees
[11 W L1 (= To | = 110 o [P PO PP TUPPRPOPPRP
Memcached Tool Integration for Centralized Cachecooiiiiiiiiiiiii e
NFS Server Data Storage fOr POUSoouiiiiiiiiiiiie ettt
MONQGO DB TLS INEGIALIONeeiiiiiiieiiteie ettt s et et e e e e e e st et e e enb e e e e aneee
Advanced ROE and Ticket MatChINGccueviiiiiiiiiie e 10
Web Security Configuration Porting from Apache t0 NQiNX.........cooouiiiiiiiiiiiieeee e 11
Tomcat Clustering for Session Management in CAN & CAS ... 11

Ul Porting With REaCt FrameEWOTKcooiii ittt 12

17.

18.

19.

20.

21.

22.

23.

24,

25.

1Y/ To) Lo To T B = TS o= U 11 o PSPPI 12

Mongo DB Version Upgrade from V3.4.6 t0 VA.4.5coooiiiiiiiieii ettt sianee e e 13
Single Login SESSION fOr @ USEI ...ciciiiiiiiieiic ettt et e e e e e e e e s st ae e e e e e s e nnnnnees 13
LYo T4 o] o [T gl 101 (Yo =1 (o o SRR 14
Parser Ul ENNANCEIMENToiiiiiiiiiiiie et nn e 14
Java Security Manager ENhanCemMENt.........cooiiiiiiiiiiiec e r e e e e e e e 15
Re-Scheduling of Trigger based on Ul Cron Pattern Configurationscccccvvvveeeiiiciinneeenenne 15
PrediCtion @S @ SEIVICEciiuiiii ettt ettt e st e sab e e s e bb e e s nnbe e e e e 16

REST API for prediCtion delIVEIYooo i 16

avanseus

Revision History

Date Created / Modified by Reviewed by Comments

29-04-2021 Naveen / Sandeep Singh | Chiranjib Bhandary Draft

Focus

The main focus of this release is to enable CAN application to run on cloud native Kubernetes platforms.
Cloud native Kubernetes platforms enable hardware usage optimizations, simplify deployment, scale the
application on need basis, ensures high availability and most importantly, allows micro-services based
architecture. The release also includes remaking the Ul using React framework for better responsiveness
and major features like policy based RoE, ServiceNow integration and Kafka integration along with other
additional features. Full list of features we have productized in this release are produced below.

Cloud Native Features:

Nogkrwdhr

Kubernetes Based Deployment

Elasticstack Integration in Openshift

Pod Logging

Horizontal Pod Auto Scaling

Helm Charts for Easy Installation

Integration with Istio Service Mesh

Integration with Monitoring softwares (Kiali, Prometheus and Grafana)

3 Party Product Integrations:

8.
9.
10.
11.
12.

Service Now Integration

Kafka Integration

Memcached Tool Integration for Centralized Cache
NFS Server Data Storage for Pods

Mongo DB TLS Integration

Other Features:

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.

Advanced RoE and Ticket Matching

Web Security Configuration Porting from Apache to Nginx
Tomcat Clustering for Session Management in CAN & CAS
Ul Porting with React Framework

Mongo DB Sharding

Mongo DB Version Upgrade from v3.4.6 to v4.4.5

Single login session for a user

Workorder integration in Parser

Parser screen enhancements

Java Security Manager Enhancement

Re-scheduling of Trigger based on Ul Cron Pattern Configurations
Prediction as a service

REST API for prediction delivery

Terminologies

Requirements are classified based on type & priority.

avanseus

A. Requirement Types

Requirement Type Definition

Business Business requirement deals mainly with business goals and stakeholder
expectations and tells us about the future state of the product and why the
objective is worthwhile.

Functional Functional requirements are much more specific and detailed compared to
business requirements. They outline how a product will support business
requirements and specify the steps on how the requirement will be
delivered.

Non-functional The non-functional requirement elaborates a performance characteristic of
the system. These requirements fall in areas such as accessibility,
documentation, efficiency, disaster recovery, security etc.,

B. Requirement Priorities

Priority Semantics
Critical A critical requirement without which the product is not acceptable to the
stakeholders
Important A necessary but deferrable requirement which makes the product less usable
but still functional
Desirable A nice feature to have if there are resources but the product functions well
without it

Requirements

1. Kubernetes Based Deployment

Type Functional requirement

Priority Critical

Introduction:

Kubernetes is an open source system for automation of deployment, scaling and management of
containerized applications. It groups containers that make up applications to logical units for easy
management and discovery.

Aim:

Aim is to convert the existing VM based deployment to Kubernetes based deployment. This will
enable CAN applications to be segregated into micro services (logical units) that can be managed
using the automation capabilities of Kubernetes and will render superior service using features
like load balancing, self-healing, auto scaling etc.

avanseus

Requirements:

Requirement ID Requirement Description
REQO05501 Development of Kubernetes based deployment architecture
REQ05502 Creation of POD images for CAN Services
REQO05503 Enable Service Level Load Distribution and Traffic Management
REQ05504 Enable hardware load balancer (i.e, using cloud vendor provided
application load balancer) and software load balancer (i.e., using Nginx
Web Server)

2. Elasticstack Integration in OpenShift

Type Business Requirement

Priority Important

Introduction:

Elastic Stack is a group of open source products from Elastic designed to help users take data
from any type of source and in any format and search, analyze, and visualize that data in real
time. Kibana is an open-source data visualization and exploration tool used for log and time-
series analytics, application monitoring, and operational intelligence use cases

Aim:

Elasticstack Integration with CAN Kubernetes ecosystem allows the Pod logs to be visualized in
Kibana.

Requirements:

Requirement ID Requirement description
REQ05505 Collecting logs from the Pods
REQO05506 Keeping the details of the killed logs
REQO05507 Allowing Pod logs to be visualized in Kibana Ul

3. Pod Logging

Type Non-Functional
Requirement
Priority Important

Introduction:
Pod Logging is particularly useful for debugging problems and monitoring cluster activity.

Aim:

avanseus

Aim is to enable pod logging in CAN Kubernetes ecosystem.

Requirements:

Requirement ID Requirement Description
REQ05508 Removal of support for file based logging
REQO05509 Ensuring application logs are available as Pod's container logs

Horizontal Pod Autoscaling — HPA

Type Functional Requirement

Priority Important

Introduction:

Horizontal Pod Autoscaling is a Kubernetes feature where the pods can auto scale based on
CPU utilization or custom metrics.

Aim:
Implementation of Horizontal Pod Auto Scaling in CAN, so that it automatically scales the number
of Pods in a replication controller, deployment, replica set or stateful set based on observed CPU

utilization.

Requirements:

Requirement ID Requirement Description
REQO05510 CAN GUI application and Prediction controller modules should support
HPA to meet increased demands of GUI requests and Prediction batch
requests
REQO05511 Prediction worker modules should automatically scale

(upward/downward) to efficiently run the atomic predictions based on the
increasing demands from the Prediction controller when the CPU
utilization hits a configured threshold

REQ05512 Allows configurations CPU target utilization, minimum and maximum
replica count for all the modules that support HPA

Helm Charts for Easy Installation

Type Functional Requirement

Priority Important

Introduction:

Helm charts helps in management of CAN pods. It helps user to define, install and upgrade
Kubernetes application.

avanseus
Aim:
Aim is to enable Helm chart based implementation for CAN pods/ Kubernetes.

Requirements:

Requirement ID Requirement Description
REQO05513 Creation of Helm Charts for CAN modules
REQO05514 Manage the release, upgrades and uninstallation of CAN Kubernetes
through Helm charts

Integration with Istio Service Mesh

Type Non-Functional Requirement

Priority Important

Introduction:

Istio is an open source service mesh that layers transparently onto existing distributed
applications. Istio’s powerful features provide a uniform and more efficient way to secure,
connect, and monitor services.

Aim:

Integration of Istio service mesh to CAN ecosystem of Kubernetes based deployment and to
enable micro service monitoring besides discovery, load balancing, failure recovery.

Requirements:

6.1. Service Mesh with Envoy proxy

Requirement ID Requirement Description

REQ05515 Each workload/pod should get deployed along with its own envoy
sidecar proxy. These envoy proxies should provide features like traffic
management, service authorization, load balancing, dynamic service
discovery etc.,

6.2. Authorization Policy

Requirement ID Requirement Description

REQ05516 Authorization policy is used to control how different modules of CAN
applications share data with one another using ALLOW/DENY
permissions on all the workloads deployed in the CAN workspace

REQ05517 Authorization policy is also enabled to specify the HTTP methods (GET,
POST, PUT etc.,) that have to be used while communicating with other
pods inside the namespace

avanseu&
6.3. Peer Authentication Policy

Requirement ID Requirement Description

REQ05518 It allows to configure all the workloads in CAN workspace to only accept
requests encrypted with TLS in STRICT mode

Integration with Monitoring Softwares (Kiali, Prometheus and Grafana)

Type Functional Requirement

Priority Important

Introduction:

Kiali is the management console for Istio based service mesh. Kiali provides dashboards,
observability, and ensure mesh operation with robust configuration and validation capabilities. It
shows the structure of service mesh by inferring traffic topology and displays the health of mesh.
Prometheus is a free software application used for event monitoring and alerting. It records real-
time metrics in a time series database built using a HTTP pull model, with flexible queries and
real-time alerting.

Grafana is a multi-platform open source analytics and interactive visualization web application. It
provides charts, graphs, and alerts for the web when connected to supported data sources

Aim:
Integration with Kiali, Prometheus and Grafana to get more insights into performance of
containerized applications, Kubernetes clusters, Docker containers, and underlying infrastructure

metrics.

Requirements:

7.1. Integration with Kiali

Requirement ID Requirement Description
REQ05519 Shows the structure of service mesh by inferring traffic topology and
displays the health of the service mesh
REQ05520 Facilitates to view the application logs of any interested pods from Kiali
dashboard
REQ05521 Facilitates to view pod health, inbound and outbound traffic direction and

MTLS configuration

avanseus

7.2. Integration with Prometheus

Requirement ID Requirement Description

REQ05522 Collects the real-time metrics in a time series database of all the running
microservices within the system. Internally these metrics are used by
Grafana and Kiali dashboards

7.3. Integration with Grafana

Requirement ID Requirement Description
REQ05523 “Avanseus_Dashboard” preloaded with visualization of CPU utilization of
database, master node and worker node
REQ05524 “Avanseus_Dashboard” preloaded with visualization of HTTP
request/response stats between consumer, controller and worker nodes
REQ05525 Ability to add/modify the dashboard as per the requirements by writing
appropriate queries related to microservices data

8. ServiceNow Integration

Type Business Requirement

Priority Critical

Introduction:

ServiceNow is an enterprise entity that provides solutions for IT asset management and other
digitalization drives that happens in the IT ecosystem. One of the key product of ServiceNow
includes the IT Service Management Tool that helps the telecom, IT customers to log in fault
incidents, track and close them through the digital work flows.

Aim:

Main objective of integration is to optimize the customer operations. It had been noted that there
are multiple customers of CAN using ServiceNow ITSM tools and have raised the concern of
integrating the software for seamlessness. This integration will bring in the seamlessness among
the operation of both software mutually complimenting the cause of enhancing the customer
operations and performance.

Requirements:

Requirement ID Requirement Description
REQ05526 Creation of ServiceNow connector application and Ul support
REQ05527 Real-time extraction and display of predictive tickets with filters in tabular
and graphical forms
REQ05528 Creation of single ticket and multiple ticket directly from Prediction Data
REQ05529 Retrieving the data of already open tickets and Ul support to update the

same including engineer assignment, resolution comment & status

avanseus

Requirement ID Requirement Description
REQO05530 Option to close or terminate a predictive ticket
REQO05531 Option to archive, download, save and print reports regarding analysis of
predictive tickets

9. Kafka Integration

Type Functional Requirement

Priority Important

Introduction:

Apache Kafka is a framework which allows processing of streaming data. It is an open source
platform developed by Apache Software Foundation and provides unified, high throughput, low
latency platform for handling real time data feeds.

Aim of Integration:
Integration of CAN application with Kafka broker optimizes customer operations of sending the
alarm, ticket, and performance counter data in a streaming channel. Earlier the data was being

fed to CAN in a traditional flat file format on a daily basis. This streaming interface allows CAN to
subscribe to it and digest data in real time.

Requirements:

Requirement ID Requirement Description
REQ05532 Creation of consumer API
REQO05533 Creation of connector API
REQ05534 Creation of Stream API
REQO05535 Creation of Admin API
REQO05536 Creation of Ul support configuration
REQ05537 Audit information of data collected to be shown in Monitoring screen

10.Memcached Tool Integration for Centralized Cache

Type Non-Functional
Requirement
Priority Important

Introduction:

Memcached is a general purpose distributed memory caching system. It is used to speed up
dynamic database driven applications by caching data and objects in a centralized server. This is
a free and open source software.

~
avanseus
Aim:
Memcached Tool Integration is used for centralized session storage for distributed tomcat setup.

It also enables CAN to keep the temporary data or caching data in the centralized server for
faster retrieval of data.

Requirements:

Requirement ID Requirement Description
REQO05538 Integration of Memcached tool in CAN & CAS for session storage
REQ05539 Integration of Memcached tool to store login tickets against the session
IDs

11.NFS Server Data Storage for Pods

Type Non-Functional
Requirement
Priority Important

Introduction:

The Network File System (NFS) is a client/server application that allows a computer user view
and optionally store and update files on a remote computer as though they were on the user's
own computer. NFS server allows the storage for stateful Pod data.

Aim:

Aim is to enable NFS storage for CAN pods so that data persistence can be enabled where

destruction of pods doesn’t destroy data. With the feature of data accessibility to multiple pods at
the same time, it also allows sharing of data between the pods.

Requirements:

Requirement ID Requirement Description
REQ05540 Creation and configuration of NFS servers
REQ05541 Use of NFS volumes for pods

12.Mongo DB TLS Integration

Type Non-Functional Requirement

Priority Important

Introduction:

avanseus

Transport Layer Security (TLS) is a cryptographic protocol that enables end-to-end security of
data sent over internet. It avoids and prevents possible eavesdropping or alteration of such data
being sent ensuring the sanctity of the data.

Aim:

TLS integration in MongoDB is to ensure secured way of data transmission between the
MongoDB server and the client application.

Requirements:

Requirement ID Requirement Description
REQ05542 TLS/SSL enablement over Mongo DB instances
REQ05543 Certificate Management

13.Advanced RoE and Ticket Matching

Type Functional Requirement

Priority Critical

Introduction:

Return on Effort (RoE) index based prediction shortlisting is a way to select a particular subset of
predicted faults which are more impactful or likely to happen and highlight them in the prediction
report. This impact or likelihood of faults are determined by taking cumulative effects as
measured by weight indices of different parameters like fault history, ticket history, alarm
occurrences, ticket correlation, service impact, rarity etc.

Aim:

Advanced Return on Effort (RoE) provides flexibility to efficiently control the number of predictions
to be selected through policy configurations. Now, CAN not only prioritizes predictions based on
automatic correlation with tickets available on the history, but it can refine prioritization based on
user provided policies too. Apart from the existing parameters provided in previous release, there
are new parameters in policy configuration given by default to improve the accuracy of RoE
prediction. These are:

Ticket correlation — To match more reactive tickets

Service impacting — To match more service impacting alarms

Rarity — To match rarer alarms

Prioritized cause category — To match more hardware & Infra alarms than Transmission
alarms

e Work order count — To match more field tickets/work orders

Requirements:

Requirement ID Requirement Description
REQO05544 Ul support to define, select and delete RoOE policies
REQ05545 Execution of defined policies in post prediction phase

10

avanseus

Requirement ID Requirement Description

REQ05546 Ul support for report generation, download, archive etc.

14.Web Security Configuration Porting from Apache to Nginx

Type Non-Functional Requirement

Priority Important

Introduction:

Nginx is a high reliable and secure web server that can be hardened further based on user
requirement to cater applications of different criticality. This supports open source
implementations for popular web server hardening approaches and security standards.

Aim:

To port all configurations of CAN from existing Apache HTTPD server to Nginx web servers. This
will bring in more flexibility for managing configuration changes in adhoc customer requirements,
Reduced time towards identifying the service affecting activity, overall improvement and efficiency
of manpower by reduced waiting time for user, enable on the fly upgrades and load balancing.

Requirements:

Requirement ID Requirement Description
REQ05547 Creation and configuration of Nginx web server
REQ05548 Porting of previous environment configurations in Apache server to
Nginx server configurations
REQ05549 Porting of previous security configurations in Apache server to Nginx
server configurations

15.Tomcat Clustering for Session Management in CAN & CAS

Type Functional Requirement

Priority Important

Introduction:

Clustering of Tomcat servers enables a group of servers serving the incoming HTTP requests
rather than single server doing it. This enables high availability for the HTTP requests even if one
or few tomcats are down in the tomcat cluster.

Aim:
The CAN and CAS tomcat applications are clustered, which enable them to run in multiple
instances for high availability. This will enable better HTTP request load management and

session recovery in case of server crash as session IDs will be shared among the cluster
members.

11

avanseus

Requirements:

Requirement ID Requirement Description
REQ05550 Configuration of Tomcat clustering for CAN & CAS
REQO05551 Compatibility of clustering with Kubernetes horizontal pod auto scaling

16.Ul Porting with React Framework

Type Non-Functional Requirement

Priority Important

Introduction:

React/React JS is open source front end java script library used for building Ul components. Such
Ul components together will constitute the complex Ul of application improving overall dashboard
experience.

Aim:

Ul Porting with React Framework helps to increase the performance of the application. This
integration separates the front end module from backend services & communication between the
front end & backend module happens over REST API.

Requirements:

Requirement ID Requirement Description
REQ05552 Creation of Ul components in React JS
REQ05553 Configuration and integration of Ul components
REQO05554 Integration of Spring REST API for create, update, view or delete
operations with the backend

17.Mongo DB Sharding

Type Non-Functional Requirement

Priority Important

Introduction:

Sharding is method of distributing data across multiple machines. Mongo DB uses sharding to
support deployment with very large data sets and high throughput operations.

Aim:
Mongo DB sharding enables us to handle large amount of CAN data. This implementation will

improve the efficiency of data processing due to horizontal scaling, reduce overall cost of
implementation and overall better management of work load.

12

18.

avanseus

Requirements:

Requirement ID Requirement Description
REQ05555 Creation of shard cluster in Mongo DB
REQ05556 Configuration of cluster for CAN operations

Mongo DB Version Upgrade from V3.4.6 to V4.4.5
Type Non-Functional Requirement
Priority Important

Introduction:

Upgrading to the latest version of Mongo DB as the version 3.4.6 is out of support.

Aim of Integration:

Aim is to upgrade the Mongo DB to latest stable version (v4.4.5) which provides the best support
for the CAN database management. MongoDB 4.4.5 is a database designed for ease of

development and scaling. Upgradation provide security patches, bug fixes, and new or changed
features that generally do not contain any backward breaking changes.

Requirements:

Requirement ID Requirement Description
REQ05557 Upgrade of Mongo DB and associated modules
REQ05558 Inconsistent features from previous version are discontinued

19.Single Login Session for a User

Type Functional Requirement

Priority Important

Introduction:
Management of user log in session to avoid extended vulnerability.
Aim:

Aim is to enable single login session for a user account at an instance and eliminate old login
sessions for the same user ID.

Requirements:

13

avanseus

Requirement ID Requirement Description

REQO05559 Allows and allots new user session for a logged in user & logs out or
kicks out the session allocated for same user identifier who logged in
earlier from another location/browser.

20.Workorder Integration

Type Functional Requirement

Priority Important

Introduction:

Predictive tickets/workorder ingestion in CAN allows the software to map it directly to Predicted
faults to check what was the action taken on field, time taken etc.,

Aim:

Aim is to implement work order parsing as part of input parsing over user interface. This involves
mapping of raw work order data fields with CAN work order fields.

Requirements:

Requirement ID Requirement Description

REQO05560 Ul support for parsing workorder details

21.Parser Ul Enhancement

Type Functional Requirement

Priority Important

Introduction:
Enhancement to meet end user experience in Parser screen.
Aim:

Aim is to allow users to add multiple columns for parser configuration.

Requirement ID Requirement Description

REQ05561 Enable multi-selection of columns for a parser in Parser configuration
screen

14

avanseus

22.Java Security Manager Enhancement

23.

Type Non-Functional Requirement

Priority Important

Introduction:

Java Security Manager defines security policy for the CAN application limiting the actions allowed
by the users. The Java Security Manager provides a facility to prevent untrusted code from
accessing files on the local file system, connecting to a different host, executing harmful
commands and many additional restrictions.

Aim:

Aim is to integrate Java security manager preventing users from running scripts that can
compromise the CAN application at any level. This is critical as CAN provides additional flexibility
to its users by providing options to run code snippets to customize the way CAN has to convert
the data. Example: Data parsing, Excel report cell information etc.,

Requirements:

Requirement ID Requirement Description
REQ05562 Enables java security manager to pick-up configurations automatically
REQO05563 Prevents untrusted code from accessing or modifying system resources
REQO05564 Uses configuration file (security, Policy) to check the permissions during
run time and only the configured permissions in the policy file are
allowed

Re-Scheduling of Trigger based on Ul Cron Pattern Configurations
Type Functional Requirement
Priority Important

Introduction:

Cron pattern configurations is available across many modules in CAN. They deal with scheduling
of job/activity associated with that module. Re-scheduling option enables job to be rescheduled
based on the newly configured Cron pattern.

Aim:
Aim is to reschedule the Cron job instantly whenever it is updated in the Ul. This also ensures
that the job gets schedules in one of the tomcats in clustered setup. If any of the tomcats goes

down, the scheduler runs the job in a tomcat that is alive at that moment.

Requirements:

15

avanseus

Requirement ID Requirement Description

REQ05565 Reschedule Cron jobs to an appropriate time instantly whenever it is
updated from the Ul

24.Prediction as a Service

Type Functional Requirement

Priority Important

Introduction:

Prediction as a service architecture decomposes the existing prediction flow architecture into 3
components:
a. Consumer: Responsible for generation of prediction input
b. Controller: Responsible for collecting the prediction input & calling the work service in batch
mode
c. Worker: Responsible for performing atomic prediction

Aim:
Aim of Prediction as a service is to allow each component mentioned above to perform its tasks
independently & also allows components to remain completely autonomous and unaware of each

other.

Requirements:

Requirement ID Requirement Description

REQ05566 Worker Service: Ability to call the worker service to get instantaneous
result of a given prediction input sequence.

REQO05567 Controller Service: Ability to upload the prediction input file using
multipart request and download the entire output file.

25.REST API for prediction delivery

Type Functional Requirement

Priority Important

Introduction:

Prediction delivery in the previous releases used to happen via Email excel attachment or
customer had a provision to download the same Excel report from CAN Dashboard. With the
implementation of REST API for prediction delivery, customers can download the prediction
report for a desired date over a REST call.

Aim:

16

avanseus

Aim of REST API for prediction delivery is to allow third party customer application to directly
download the prediction report over REST call & integrate it with their ticketing system. The REST
API is documented using Swagger API specifications.

Requirements:

Requirement ID Requirement Description
REQ05568 REST API delivers prediction report in JSON format
REQO05569 REST API documentation using Swagger specifications defining the
REST URL, input format & output format
REQO05570 REST API support for username & password authentication over HTTP
Auth header to authorize access to the REST APl URL

17

	Revision History
	Focus
	Terminologies
	A. Requirement Types
	B. Requirement Priorities

	Requirements
	1. Kubernetes Based Deployment
	2. Elasticstack Integration in OpenShift
	3. Pod Logging
	4. Horizontal Pod Autoscaling – HPA
	5. Helm Charts for Easy Installation
	6. Integration with Istio Service Mesh
	6.1. Service Mesh with Envoy proxy
	6.2. Authorization Policy
	6.3. Peer Authentication Policy

	7. Integration with Monitoring Softwares (Kiali, Prometheus and Grafana)
	7.1. Integration with Kiali
	7.2. Integration with Prometheus
	7.3. Integration with Grafana

	8. ServiceNow Integration
	9. Kafka Integration
	10. Memcached Tool Integration for Centralized Cache
	11. NFS Server Data Storage for Pods
	12. Mongo DB TLS Integration
	13. Advanced RoE and Ticket Matching
	14. Web Security Configuration Porting from Apache to Nginx
	15. Tomcat Clustering for Session Management in CAN & CAS
	16. UI Porting with React Framework
	17. Mongo DB Sharding
	18. Mongo DB Version Upgrade from V3.4.6 to V4.4.5
	19. Single Login Session for a User
	20. Workorder Integration
	21. Parser UI Enhancement
	22. Java Security Manager Enhancement
	23. Re-Scheduling of Trigger based on UI Cron Pattern Configurations
	24. Prediction as a Service
	25. REST API for prediction delivery

