

CAN 5.5

Requirements Document

APRIL 29, 2021
AVANSEUS TECHNOLOGIES PVT. LTD.

Table of Contents

Revision History ... 1

Focus ... 1

Terminologies... 1

A. Requirement Types... 2

B. Requirement Priorities .. 2

Requirements ... 2

1. Kubernetes Based Deployment .. 2

2. Elasticstack Integration in OpenShift .. 3

3. Pod Logging .. 3

4. Horizontal Pod Autoscaling – HPA ... 4

5. Helm Charts for Easy Installation .. 4

6. Integration with Istio Service Mesh ... 5

6.1. Service Mesh with Envoy proxy ... 5

6.2. Authorization Policy .. 5

6.3. Peer Authentication Policy ... 6

7. Integration with Monitoring Softwares (Kiali, Prometheus and Grafana) .. 6

7.1. Integration with Kiali ... 6

7.2. Integration with Prometheus ... 7

7.3. Integration with Grafana ... 7

8. ServiceNow Integration ... 7

9. Kafka Integration ... 8

10. Memcached Tool Integration for Centralized Cache .. 8

11. NFS Server Data Storage for Pods .. 9

12. Mongo DB TLS Integration ... 9

13. Advanced RoE and Ticket Matching .. 10

14. Web Security Configuration Porting from Apache to Nginx.. 11

15. Tomcat Clustering for Session Management in CAN & CAS ... 11

16. UI Porting with React Framework ... 12

17. Mongo DB Sharding.. 12

18. Mongo DB Version Upgrade from V3.4.6 to V4.4.5 ... 13

19. Single Login Session for a User ... 13

20. Workorder Integration ... 14

21. Parser UI Enhancement ... 14

22. Java Security Manager Enhancement .. 15

23. Re-Scheduling of Trigger based on UI Cron Pattern Configurations ... 15

24. Prediction as a Service ... 16

25. REST API for prediction delivery .. 16

1

Revision History

Date Created / Modified by Reviewed by Comments

29-04-2021 Naveen / Sandeep Singh Chiranjib Bhandary Draft

Focus

The main focus of this release is to enable CAN application to run on cloud native Kubernetes platforms.
Cloud native Kubernetes platforms enable hardware usage optimizations, simplify deployment, scale the
application on need basis, ensures high availability and most importantly, allows micro-services based
architecture. The release also includes remaking the UI using React framework for better responsiveness
and major features like policy based RoE, ServiceNow integration and Kafka integration along with other
additional features. Full list of features we have productized in this release are produced below.

Cloud Native Features:

1. Kubernetes Based Deployment
2. Elasticstack Integration in Openshift
3. Pod Logging
4. Horizontal Pod Auto Scaling
5. Helm Charts for Easy Installation
6. Integration with Istio Service Mesh
7. Integration with Monitoring softwares (Kiali, Prometheus and Grafana)

3rd Party Product Integrations:

8. Service Now Integration
9. Kafka Integration
10. Memcached Tool Integration for Centralized Cache
11. NFS Server Data Storage for Pods
12. Mongo DB TLS Integration

Other Features:

13. Advanced RoE and Ticket Matching
14. Web Security Configuration Porting from Apache to Nginx
15. Tomcat Clustering for Session Management in CAN & CAS
16. UI Porting with React Framework
17. Mongo DB Sharding
18. Mongo DB Version Upgrade from v3.4.6 to v4.4.5
19. Single login session for a user
20. Workorder integration in Parser
21. Parser screen enhancements
22. Java Security Manager Enhancement
23. Re-scheduling of Trigger based on UI Cron Pattern Configurations
24. Prediction as a service
25. REST API for prediction delivery

Terminologies

Requirements are classified based on type & priority.

2

A. Requirement Types

Requirement Type Definition

Business Business requirement deals mainly with business goals and stakeholder

expectations and tells us about the future state of the product and why the

objective is worthwhile.

Functional Functional requirements are much more specific and detailed compared to

business requirements. They outline how a product will support business

requirements and specify the steps on how the requirement will be

delivered.

Non-functional The non-functional requirement elaborates a performance characteristic of

the system. These requirements fall in areas such as accessibility,

documentation, efficiency, disaster recovery, security etc.,

B. Requirement Priorities

Priority Semantics

Critical A critical requirement without which the product is not acceptable to the

stakeholders

Important A necessary but deferrable requirement which makes the product less usable

but still functional

Desirable A nice feature to have if there are resources but the product functions well

without it

Requirements

1. Kubernetes Based Deployment

Type Functional requirement

Priority Critical

Introduction:

Kubernetes is an open source system for automation of deployment, scaling and management of
containerized applications. It groups containers that make up applications to logical units for easy
management and discovery.

Aim:

Aim is to convert the existing VM based deployment to Kubernetes based deployment. This will
enable CAN applications to be segregated into micro services (logical units) that can be managed
using the automation capabilities of Kubernetes and will render superior service using features
like load balancing, self-healing, auto scaling etc.

3

Requirements:

Requirement ID Requirement Description

REQ05501 Development of Kubernetes based deployment architecture

REQ05502 Creation of POD images for CAN Services

REQ05503 Enable Service Level Load Distribution and Traffic Management

REQ05504 Enable hardware load balancer (i.e, using cloud vendor provided
application load balancer) and software load balancer (i.e., using Nginx
Web Server)

2. Elasticstack Integration in OpenShift

Type Business Requirement

Priority Important

Introduction:

Elastic Stack is a group of open source products from Elastic designed to help users take data
from any type of source and in any format and search, analyze, and visualize that data in real
time. Kibana is an open-source data visualization and exploration tool used for log and time-
series analytics, application monitoring, and operational intelligence use cases

Aim:

Elasticstack Integration with CAN Kubernetes ecosystem allows the Pod logs to be visualized in
Kibana.

Requirements:

Requirement ID Requirement description

REQ05505 Collecting logs from the Pods

REQ05506 Keeping the details of the killed logs

REQ05507 Allowing Pod logs to be visualized in Kibana UI

3. Pod Logging

Type Non-Functional
Requirement

Priority Important

Introduction:

Pod Logging is particularly useful for debugging problems and monitoring cluster activity.

Aim:

4

Aim is to enable pod logging in CAN Kubernetes ecosystem.

Requirements:

Requirement ID Requirement Description

REQ05508 Removal of support for file based logging

REQ05509 Ensuring application logs are available as Pod's container logs

4. Horizontal Pod Autoscaling – HPA

Type Functional Requirement

Priority Important

Introduction:

Horizontal Pod Autoscaling is a Kubernetes feature where the pods can auto scale based on
CPU utilization or custom metrics.

Aim:

Implementation of Horizontal Pod Auto Scaling in CAN, so that it automatically scales the number
of Pods in a replication controller, deployment, replica set or stateful set based on observed CPU
utilization.

Requirements:

Requirement ID Requirement Description

REQ05510 CAN GUI application and Prediction controller modules should support

HPA to meet increased demands of GUI requests and Prediction batch

requests

REQ05511 Prediction worker modules should automatically scale

(upward/downward) to efficiently run the atomic predictions based on the

increasing demands from the Prediction controller when the CPU

utilization hits a configured threshold

REQ05512 Allows configurations CPU target utilization, minimum and maximum
replica count for all the modules that support HPA

5. Helm Charts for Easy Installation

Type Functional Requirement

Priority Important

Introduction:

Helm charts helps in management of CAN pods. It helps user to define, install and upgrade
Kubernetes application.

5

Aim:

Aim is to enable Helm chart based implementation for CAN pods/ Kubernetes.

Requirements:

Requirement ID Requirement Description

REQ05513 Creation of Helm Charts for CAN modules

REQ05514 Manage the release, upgrades and uninstallation of CAN Kubernetes

through Helm charts

6. Integration with Istio Service Mesh

Type Non-Functional Requirement

Priority Important

Introduction:

Istio is an open source service mesh that layers transparently onto existing distributed
applications. Istio’s powerful features provide a uniform and more efficient way to secure,
connect, and monitor services.

Aim:

Integration of Istio service mesh to CAN ecosystem of Kubernetes based deployment and to
enable micro service monitoring besides discovery, load balancing, failure recovery.

Requirements:

6.1. Service Mesh with Envoy proxy

Requirement ID Requirement Description

REQ05515 Each workload/pod should get deployed along with its own envoy

sidecar proxy. These envoy proxies should provide features like traffic

management, service authorization, load balancing, dynamic service

discovery etc.,

6.2. Authorization Policy

Requirement ID Requirement Description

REQ05516 Authorization policy is used to control how different modules of CAN

applications share data with one another using ALLOW/DENY

permissions on all the workloads deployed in the CAN workspace

REQ05517 Authorization policy is also enabled to specify the HTTP methods (GET,
POST, PUT etc.,) that have to be used while communicating with other
pods inside the namespace

6

6.3. Peer Authentication Policy

Requirement ID Requirement Description

REQ05518 It allows to configure all the workloads in CAN workspace to only accept

requests encrypted with TLS in STRICT mode

7. Integration with Monitoring Softwares (Kiali, Prometheus and Grafana)

Type Functional Requirement

Priority Important

Introduction:

Kiali is the management console for Istio based service mesh. Kiali provides dashboards,
observability, and ensure mesh operation with robust configuration and validation capabilities. It
shows the structure of service mesh by inferring traffic topology and displays the health of mesh.

Prometheus is a free software application used for event monitoring and alerting. It records real-
time metrics in a time series database built using a HTTP pull model, with flexible queries and
real-time alerting.

Grafana is a multi-platform open source analytics and interactive visualization web application. It
provides charts, graphs, and alerts for the web when connected to supported data sources

Aim:

Integration with Kiali, Prometheus and Grafana to get more insights into performance of
containerized applications, Kubernetes clusters, Docker containers, and underlying infrastructure
metrics.

Requirements:

7.1. Integration with Kiali

Requirement ID Requirement Description

REQ05519 Shows the structure of service mesh by inferring traffic topology and

displays the health of the service mesh

REQ05520 Facilitates to view the application logs of any interested pods from Kiali
dashboard

REQ05521 Facilitates to view pod health, inbound and outbound traffic direction and
MTLS configuration

7

7.2. Integration with Prometheus

Requirement ID Requirement Description

REQ05522 Collects the real-time metrics in a time series database of all the running

microservices within the system. Internally these metrics are used by

Grafana and Kiali dashboards

7.3. Integration with Grafana

Requirement ID Requirement Description

REQ05523 “Avanseus_Dashboard” preloaded with visualization of CPU utilization of

database, master node and worker node

REQ05524 “Avanseus_Dashboard” preloaded with visualization of HTTP

request/response stats between consumer, controller and worker nodes

REQ05525 Ability to add/modify the dashboard as per the requirements by writing
appropriate queries related to microservices data

8. ServiceNow Integration

Type Business Requirement

Priority Critical

Introduction:

ServiceNow is an enterprise entity that provides solutions for IT asset management and other
digitalization drives that happens in the IT ecosystem. One of the key product of ServiceNow
includes the IT Service Management Tool that helps the telecom, IT customers to log in fault
incidents, track and close them through the digital work flows.

Aim:

Main objective of integration is to optimize the customer operations. It had been noted that there
are multiple customers of CAN using ServiceNow ITSM tools and have raised the concern of
integrating the software for seamlessness. This integration will bring in the seamlessness among
the operation of both software mutually complimenting the cause of enhancing the customer
operations and performance.

 Requirements:

Requirement ID Requirement Description

REQ05526 Creation of ServiceNow connector application and UI support

REQ05527 Real-time extraction and display of predictive tickets with filters in tabular

and graphical forms

REQ05528 Creation of single ticket and multiple ticket directly from Prediction Data

REQ05529 Retrieving the data of already open tickets and UI support to update the
same including engineer assignment, resolution comment & status

8

Requirement ID Requirement Description

REQ05530 Option to close or terminate a predictive ticket

REQ05531 Option to archive, download, save and print reports regarding analysis of
predictive tickets

9. Kafka Integration

Type Functional Requirement

Priority Important

Introduction:

Apache Kafka is a framework which allows processing of streaming data. It is an open source
platform developed by Apache Software Foundation and provides unified, high throughput, low
latency platform for handling real time data feeds.

Aim of Integration:

Integration of CAN application with Kafka broker optimizes customer operations of sending the
alarm, ticket, and performance counter data in a streaming channel. Earlier the data was being
fed to CAN in a traditional flat file format on a daily basis. This streaming interface allows CAN to
subscribe to it and digest data in real time.

Requirements:

Requirement ID Requirement Description

REQ05532 Creation of consumer API

REQ05533 Creation of connector API

REQ05534 Creation of Stream API

REQ05535 Creation of Admin API

REQ05536 Creation of UI support configuration

REQ05537 Audit information of data collected to be shown in Monitoring screen

10. Memcached Tool Integration for Centralized Cache

Type Non-Functional
Requirement

Priority Important

Introduction:

Memcached is a general purpose distributed memory caching system. It is used to speed up
dynamic database driven applications by caching data and objects in a centralized server. This is
a free and open source software.

9

Aim:

Memcached Tool Integration is used for centralized session storage for distributed tomcat setup.
It also enables CAN to keep the temporary data or caching data in the centralized server for
faster retrieval of data.

Requirements:

Requirement ID Requirement Description

REQ05538 Integration of Memcached tool in CAN & CAS for session storage

REQ05539 Integration of Memcached tool to store login tickets against the session

IDs

11. NFS Server Data Storage for Pods

Type Non-Functional
Requirement

Priority Important

Introduction:

The Network File System (NFS) is a client/server application that allows a computer user view
and optionally store and update files on a remote computer as though they were on the user's
own computer. NFS server allows the storage for stateful Pod data.

Aim:

Aim is to enable NFS storage for CAN pods so that data persistence can be enabled where
destruction of pods doesn’t destroy data. With the feature of data accessibility to multiple pods at
the same time, it also allows sharing of data between the pods.

Requirements:

Requirement ID Requirement Description

REQ05540 Creation and configuration of NFS servers

REQ05541 Use of NFS volumes for pods

12. Mongo DB TLS Integration

Type Non-Functional Requirement

Priority Important

Introduction:

10

Transport Layer Security (TLS) is a cryptographic protocol that enables end-to-end security of
data sent over internet. It avoids and prevents possible eavesdropping or alteration of such data
being sent ensuring the sanctity of the data.

Aim:

TLS integration in MongoDB is to ensure secured way of data transmission between the
MongoDB server and the client application.

Requirements:

Requirement ID Requirement Description

REQ05542 TLS/SSL enablement over Mongo DB instances

REQ05543 Certificate Management

13. Advanced RoE and Ticket Matching

Type Functional Requirement

Priority Critical

Introduction:

Return on Effort (RoE) index based prediction shortlisting is a way to select a particular subset of
predicted faults which are more impactful or likely to happen and highlight them in the prediction
report. This impact or likelihood of faults are determined by taking cumulative effects as
measured by weight indices of different parameters like fault history, ticket history, alarm
occurrences, ticket correlation, service impact, rarity etc.

Aim:

Advanced Return on Effort (RoE) provides flexibility to efficiently control the number of predictions
to be selected through policy configurations. Now, CAN not only prioritizes predictions based on
automatic correlation with tickets available on the history, but it can refine prioritization based on
user provided policies too. Apart from the existing parameters provided in previous release, there
are new parameters in policy configuration given by default to improve the accuracy of RoE
prediction. These are:

• Ticket correlation – To match more reactive tickets

• Service impacting – To match more service impacting alarms

• Rarity – To match rarer alarms

• Prioritized cause category – To match more hardware & Infra alarms than Transmission
alarms

• Work order count – To match more field tickets/work orders

Requirements:

Requirement ID Requirement Description

REQ05544 UI support to define, select and delete RoE policies

REQ05545 Execution of defined policies in post prediction phase

11

Requirement ID Requirement Description

REQ05546 UI support for report generation, download, archive etc.

14. Web Security Configuration Porting from Apache to Nginx

Type Non-Functional Requirement

Priority Important

Introduction:

Nginx is a high reliable and secure web server that can be hardened further based on user
requirement to cater applications of different criticality. This supports open source
implementations for popular web server hardening approaches and security standards.

Aim:

To port all configurations of CAN from existing Apache HTTPD server to Nginx web servers. This
will bring in more flexibility for managing configuration changes in adhoc customer requirements,
Reduced time towards identifying the service affecting activity, overall improvement and efficiency
of manpower by reduced waiting time for user, enable on the fly upgrades and load balancing.

Requirements:

Requirement ID Requirement Description

REQ05547 Creation and configuration of Nginx web server

REQ05548 Porting of previous environment configurations in Apache server to
Nginx server configurations

REQ05549 Porting of previous security configurations in Apache server to Nginx
server configurations

15. Tomcat Clustering for Session Management in CAN & CAS

Type Functional Requirement

Priority Important

Introduction:

Clustering of Tomcat servers enables a group of servers serving the incoming HTTP requests
rather than single server doing it. This enables high availability for the HTTP requests even if one
or few tomcats are down in the tomcat cluster.

Aim:

The CAN and CAS tomcat applications are clustered, which enable them to run in multiple
instances for high availability. This will enable better HTTP request load management and
session recovery in case of server crash as session IDs will be shared among the cluster
members.

12

Requirements:

Requirement ID Requirement Description

REQ05550 Configuration of Tomcat clustering for CAN & CAS

REQ05551 Compatibility of clustering with Kubernetes horizontal pod auto scaling

16. UI Porting with React Framework

Type Non-Functional Requirement

Priority Important

Introduction:

React/React JS is open source front end java script library used for building UI components. Such
UI components together will constitute the complex UI of application improving overall dashboard
experience.

Aim:

UI Porting with React Framework helps to increase the performance of the application. This
integration separates the front end module from backend services & communication between the
front end & backend module happens over REST API.

Requirements:

Requirement ID Requirement Description

REQ05552 Creation of UI components in React JS

REQ05553 Configuration and integration of UI components

REQ05554 Integration of Spring REST API for create, update, view or delete
operations with the backend

17. Mongo DB Sharding

Type Non-Functional Requirement

Priority Important

Introduction:

Sharding is method of distributing data across multiple machines. Mongo DB uses sharding to
support deployment with very large data sets and high throughput operations.

Aim:

Mongo DB sharding enables us to handle large amount of CAN data. This implementation will
improve the efficiency of data processing due to horizontal scaling, reduce overall cost of
implementation and overall better management of work load.

13

Requirements:

Requirement ID Requirement Description

REQ05555 Creation of shard cluster in Mongo DB

REQ05556 Configuration of cluster for CAN operations

18. Mongo DB Version Upgrade from V3.4.6 to V4.4.5

Type Non-Functional Requirement

Priority Important

Introduction:

Upgrading to the latest version of Mongo DB as the version 3.4.6 is out of support.

Aim of Integration:

Aim is to upgrade the Mongo DB to latest stable version (v4.4.5) which provides the best support
for the CAN database management. MongoDB 4.4.5 is a database designed for ease of
development and scaling. Upgradation provide security patches, bug fixes, and new or changed
features that generally do not contain any backward breaking changes.

Requirements:

Requirement ID Requirement Description

REQ05557 Upgrade of Mongo DB and associated modules

REQ05558 Inconsistent features from previous version are discontinued

19. Single Login Session for a User

Type Functional Requirement

Priority Important

Introduction:

Management of user log in session to avoid extended vulnerability.

Aim:

Aim is to enable single login session for a user account at an instance and eliminate old login
sessions for the same user ID.

Requirements:

14

Requirement ID Requirement Description

REQ05559 Allows and allots new user session for a logged in user & logs out or

kicks out the session allocated for same user identifier who logged in

earlier from another location/browser.

20. Workorder Integration

Type Functional Requirement

Priority Important

Introduction:

Predictive tickets/workorder ingestion in CAN allows the software to map it directly to Predicted
faults to check what was the action taken on field, time taken etc.,

Aim:

Aim is to implement work order parsing as part of input parsing over user interface. This involves
mapping of raw work order data fields with CAN work order fields.

Requirements:

Requirement ID Requirement Description

REQ05560 UI support for parsing workorder details

21. Parser UI Enhancement

Type Functional Requirement

Priority Important

Introduction:

Enhancement to meet end user experience in Parser screen.

Aim:

Aim is to allow users to add multiple columns for parser configuration.

Requirement ID Requirement Description

REQ05561 Enable multi-selection of columns for a parser in Parser configuration

screen

15

22. Java Security Manager Enhancement

Type Non-Functional Requirement

Priority Important

Introduction:

Java Security Manager defines security policy for the CAN application limiting the actions allowed
by the users. The Java Security Manager provides a facility to prevent untrusted code from
accessing files on the local file system, connecting to a different host, executing harmful
commands and many additional restrictions.

Aim:

Aim is to integrate Java security manager preventing users from running scripts that can
compromise the CAN application at any level. This is critical as CAN provides additional flexibility
to its users by providing options to run code snippets to customize the way CAN has to convert
the data. Example: Data parsing, Excel report cell information etc.,

Requirements:

Requirement ID Requirement Description

REQ05562 Enables java security manager to pick-up configurations automatically

REQ05563 Prevents untrusted code from accessing or modifying system resources

REQ05564 Uses configuration file (security, Policy) to check the permissions during
run time and only the configured permissions in the policy file are
allowed

23. Re-Scheduling of Trigger based on UI Cron Pattern Configurations

Type Functional Requirement

Priority Important

 Introduction:

 Cron pattern configurations is available across many modules in CAN. They deal with scheduling
of job/activity associated with that module. Re-scheduling option enables job to be rescheduled
based on the newly configured Cron pattern.

Aim:

Aim is to reschedule the Cron job instantly whenever it is updated in the UI. This also ensures
that the job gets schedules in one of the tomcats in clustered setup. If any of the tomcats goes
down, the scheduler runs the job in a tomcat that is alive at that moment.

Requirements:

16

Requirement ID Requirement Description

REQ05565 Reschedule Cron jobs to an appropriate time instantly whenever it is

updated from the UI

24. Prediction as a Service

Type Functional Requirement

Priority Important

Introduction:

Prediction as a service architecture decomposes the existing prediction flow architecture into 3
components:

a. Consumer: Responsible for generation of prediction input
b. Controller: Responsible for collecting the prediction input & calling the work service in batch

mode
c. Worker: Responsible for performing atomic prediction

Aim:

Aim of Prediction as a service is to allow each component mentioned above to perform its tasks
independently & also allows components to remain completely autonomous and unaware of each
other.

Requirements:

Requirement ID Requirement Description

REQ05566 Worker Service: Ability to call the worker service to get instantaneous

result of a given prediction input sequence.

REQ05567 Controller Service: Ability to upload the prediction input file using

multipart request and download the entire output file.

25. REST API for prediction delivery

Type Functional Requirement

Priority Important

Introduction:

Prediction delivery in the previous releases used to happen via Email excel attachment or
customer had a provision to download the same Excel report from CAN Dashboard. With the
implementation of REST API for prediction delivery, customers can download the prediction
report for a desired date over a REST call.

Aim:

17

Aim of REST API for prediction delivery is to allow third party customer application to directly
download the prediction report over REST call & integrate it with their ticketing system. The REST
API is documented using Swagger API specifications.

Requirements:

Requirement ID Requirement Description

REQ05568 REST API delivers prediction report in JSON format

REQ05569 REST API documentation using Swagger specifications defining the

REST URL, input format & output format

REQ05570 REST API support for username & password authentication over HTTP

Auth header to authorize access to the REST API URL

	Revision History
	Focus
	Terminologies
	A. Requirement Types
	B. Requirement Priorities

	Requirements
	1. Kubernetes Based Deployment
	2. Elasticstack Integration in OpenShift
	3. Pod Logging
	4. Horizontal Pod Autoscaling – HPA
	5. Helm Charts for Easy Installation
	6. Integration with Istio Service Mesh
	6.1. Service Mesh with Envoy proxy
	6.2. Authorization Policy
	6.3. Peer Authentication Policy

	7. Integration with Monitoring Softwares (Kiali, Prometheus and Grafana)
	7.1. Integration with Kiali
	7.2. Integration with Prometheus
	7.3. Integration with Grafana

	8. ServiceNow Integration
	9. Kafka Integration
	10. Memcached Tool Integration for Centralized Cache
	11. NFS Server Data Storage for Pods
	12. Mongo DB TLS Integration
	13. Advanced RoE and Ticket Matching
	14. Web Security Configuration Porting from Apache to Nginx
	15. Tomcat Clustering for Session Management in CAN & CAS
	16. UI Porting with React Framework
	17. Mongo DB Sharding
	18. Mongo DB Version Upgrade from V3.4.6 to V4.4.5
	19. Single Login Session for a User
	20. Workorder Integration
	21. Parser UI Enhancement
	22. Java Security Manager Enhancement
	23. Re-Scheduling of Trigger based on UI Cron Pattern Configurations
	24. Prediction as a Service
	25. REST API for prediction delivery

