

MONGODB SHARDING
Cognitive Assistant for Networks (CAN) Release 5.5

JULY 16, 2021
AVANSEUS TECHNOLOGY PVT. LTD.

Page | 1 Copyright © 2021 Avanseus Holdings Pte. Ltd. All rights reserved.

Revision History

Version Date Change
description

Created by Updated by Reviewed by

V 1.0 July, 2021 Initial Release Sunil Sandeep Singh Chiranjib

Page | 2 Copyright © 2021 Avanseus Holdings Pte. Ltd. All rights reserved.

Table of Contents

1. Objective .. 3

2. MongoDB Sharding .. 3

2.1. Cluster Architecture ... 3

Page | 3 Copyright © 2021 Avanseus Holdings Pte. Ltd. All rights reserved.

1. Objective

This document focuses on MongoDB sharding setup & configuration on VM based environment.
Existing customers with VM based MongoDB setup can use this documentation for sharding the
database or collection in MongoDB.

2. MongoDB Sharding

 To setup MongoDB Sharding environment, you should ideally have the below setups:

• A Config Databases Replica Set of 3 or more members

• Multiple Shard Database Replica Sets

• Mongos Database instances

Figure 1 - MongoDB Sharding Environment

2.1. Cluster Architecture

Before getting started, review the components of the setup you will create:

Page | 4 Copyright © 2021 Avanseus Holdings Pte. Ltd. All rights reserved.

• Config Server - Config server is used to store the metadata of the cluster server. This
metadata contains information of cluster data set mapping. Query router or mongos uses this
metadata information to perform operations on the specific shards. You can implement three
config server sharded clusters in a production environment.

• Shard - A shard is a database server that holds a portion of your data. Items in the database
are divided among shards either by range or hashing. Shard will provide high availability and
data consistency of the database server. You can implement each replica set to have a
separate shard. Each shard will contain a subset of sharded data.

• Query Router (Mongos) - The mongos daemon acts as an interface between the client
application and the cluster shards. Since data is distributed among multiple servers, queries
need to be routed to the shard where a given piece of information is stored. The query router
runs on the application server.

To set up all the Config, Shard and Mongos instances, follow the below steps:

1. Create the Config Server Replica Set (For a production deployment, deploy a config server
replica set with at least three members):

a. Create a directory for storing Config Server data and logs

mkdir config_server_data

mkdir config_server_logs

Go to the config_server_data directory and create the directories cfg1 for storing
config database replica sets.

cd config_server_data

mkdir cfg1

Follow the above steps in other two different servers (cfg2 & cfg3).

b. Create the configuration files required for config servers cfg1, cfg2 and cfg3:

#open the file cfg1.conf

vi cfg1.conf

#Save the below configuration in this file:

storage:

 dbPath: /home/ec2-user/mongodb/config_server_data/cfg1

 journal:

 enabled: true

systemLog:

 destination: file

 logAppend: true

 path: /home/ec2-user/mongodb/config_server_logs/cfg1.log

Page | 5 Copyright © 2021 Avanseus Holdings Pte. Ltd. All rights reserved.

net:

 port: 26050

 bindIp: 172.31.31.7 #internal IP address

sharding:

 clusterRole: configsvr

replication:

 replSetName: cfgReplicaSet

#security:

 #keyFile: /home/ec2-user/mongodbKeyFile/keyFile

Similarly, create the configuration file for cfg2 & cfg3 in other servers. Update the DB
path, log path and port number for cfg2 & cfg3.

c. Start all the three config server instances in three different servers:

Server 1: mongod --config cfg1.conf --fork

Server 2: mongod --config cfg2.conf --fork

Server 3: mongod --config cfg3.conf --fork

d. Initiate the config server with the three-member replica set and then check the status
of the server with the status () function:

mongo --host 172.31.31.7 --port 26050

>rs.initiate();

>rs.add("172.31.31.6:26050");

>rs.add("172.31.31.5:26050");

>rs.status();

2. Create the Shard Replica Sets

Note: You can create as many shards as required. Here, you will create three shards:

a. Create the directory for storing sharding server data and logs:

mkdir sharding_data

mkdir sharding_logs

Go to the sharding_data and create the folders shda1, shdb1 and shdc1 for storing
shard a, shard b & shard c’s replica sets data. Sharding 1 (shard a) will have three
replica sets shda1, shda2 & shda3, and similarly, sharding 2 (shard b) will have three
replica sets shdb1, shdb2 & shdb3, and sharding 3 (shardc) will have three replica
sets shdc1, shdc2 & shdc3. You will use shda1 for storing primary replica set data
and the other two shda2 & shda3 for secondary replica sets of shard a. Same follows
for the second shard b and c as well.

cd sharding_data

Page | 6 Copyright © 2021 Avanseus Holdings Pte. Ltd. All rights reserved.

mkdir shda1 shdb1 shdc1

Follow the same procedure in the other two servers as well for storing secondary
replica set data ((shda2, shdb2 & shdc2) & (shda3, shdb3 shdc3))

b. Create the configuration files required for sharding a, b & c

Shard a configuration:

#open the file shda1.conf

vi shda1.conf

#Save the below configuration in this file.

storage:

 dbPath: /home/ec2-user/mongodb/sharding_data/shda1

 journal:

 enabled: true

systemLog:

 destination: file

 logAppend: true

 path: /home/ec2-user/mongodb/sharding_logs/shda1.log

net:

 port: 27000

 bindIp: 172.31.31.7 #internal IP

sharding:

 clusterRole: shardsvr

replication:

 replSetName: sharda

#security:

 #keyFile: /home/ec2-user/mongodbKeyFile/keyFile

Similarly, create the configuration file required for other replica sets. Change the DB
path, log path and port number. ReplSetName sharda will remain the same for
shda1, shda2 & shda3 ReplSetName shardb for shdb1, shdb2 & shdb3 and
ReplSetName shardc for shdc1, shdc2 & shdc3. Port number 27000 will be assigned
for shard a replica set members and 27100 & 27200 for shard b & shard c replica set
members.

c. Start all the sharding server instances:

#Shard a replica set members

Page | 7 Copyright © 2021 Avanseus Holdings Pte. Ltd. All rights reserved.

Server 1: mongod --config shda1.conf --fork

Server 2: mongod --config shda2.conf --fork

Server 3: mongod --config shda3.conf –fork

#Shard b replica set members

Server 1: mongod --config shdb1.conf --fork

Server 2: mongod --config shdb2.conf --fork

Server 3: mongod --config shdb3.conf --fork

#Shard c replica set members

Server 1: mongod --config shdc1.conf --fork

Server 2: mongod --config shdc2.conf --fork

Server 3: mongod --config shdc3.conf –fork

d. Initiate replication in sharding servers. You can use the initiate () function to initiate
the config server with the default configuration. Add the replication sets and then
check the status of the server with the status () function:

#for shard a

mongo --host 172.31.31.7 --port 27000

>rs.initiate()

>rs.add("172.31.31.6:27000");

>rs.add("172.31.31.5:27000");

>rs.status();

#for shard b

mongo --host 172.31.31.7 --port 27100

>rs.initiate()

>rs.add("172.31.31.6:27100");

>rs.add("172.31.31.5:27100");

>rs.status();

#for shard c

mongo --host 172.31.31.7 --port 27200

>rs.initiate()

>rs.add("172.31.31.6:27200");

>rs.add("172.31.31.5:27200");

>rs.status();

Page | 8 Copyright © 2021 Avanseus Holdings Pte. Ltd. All rights reserved.

3. Configure mongos for the Sharded Cluster:

a. Create the configuration files required for the sharded cluster. This sharded cluster
will route the queries to different shards based on the shard key.

#open the file queryRouter.conf.

vi queryRouter.conf

#Save the below configuration in this file.

systemLog:

 destination: file

 logAppend: true

 path: /home/ec2-user/mongodb/query_router_logs/query_router.log

net:

 port: 27017

 bindIp: 172.31.31.7

sharding:

 configDB: cfgReplicaSet/172.31.31.7:26050,172.31.31.6:26050,172.31.31.5:26050

#security:

 #keyFile: /home/ec2-user/mongodbKeyFile/keyFile

b. Start the mongos service.

mongos --config query-router.conf --fork

c. Connect to the Sharded Cluster and add Shards to the cluster. Connect a mongo
shell to the mongos. Specify the host and port on which the mongos are running.

mongo --host 172.31.31.7 --port 27017

>sh.addShard("sharda/172.31.31.7:27000,172.31.31.6:27000,172.31.31.5:27000");

>sh.addShard("shardb/172.31.31.7:27100,172.31.31.6:27100,172.31.31.5:27100");

>sh.addShard("shardc/172.31.31.7:27200,172.31.31.6:27200,172.31.31.5:27200");

>sh.status();

d. Add credentials to admin and other required databases:

Admin db credentials

>db.createUser(

 {

 user: "admin",

 pwd: "Avanseus$0", #give complex passwords

 roles: [

Page | 9 Copyright © 2021 Avanseus Holdings Pte. Ltd. All rights reserved.

 { role: "clusterAdmin", db: "admin" },

 { role: "userAdmin", db: "admin" }

]

 }

);

Update admin roles

>db.updateUser("admin",{roles :
["userAdminAnyDatabase","userAdmin","readWrite","dbAdmin","clusterAdmin","read
WriteAnyDatabase","dbAdminAnyDatabase"]});

User db credentials

>use testdb

db.createUser(

 {

 "user": "testdbuser",

 "pwd": "Avanseus$0", #give complex passwords

 "roles": ["userAdmin", "dbAdmin", "readWrite"]}

 }

To connect to admin DB using mongo

mongo --authenticationDatabase admin -u admin -p 'Avanseus$0' --host localhost --
port 27017

To connect to test DB using mongo

mongo --authenticationDatabase testdb -u testdbuser -p 'Avanseus$0' --host
localhost --port 27017

e. Generate the key file using openssl tool and restart all the instances with this key file.

Generate ssl file using openssl tool.

openssl rand -base64 756 > /home/ec2-user/mongodbKeyFile/keyFile

Change the permission of this file to read only.

chmod 400 /home/ec2-user/mongodbKeyFile/keyFile

Now kill all the instances and uncomment the below code in all the conf files
(ConfigServers ,sharded clusters and query router).

security:

 keyFile: /home/ec2-user/mongodbKeyFile/keyFile

Note: Make sure you have that key file on the right path and copy the same key file
to other servers.

Page | 10 Copyright © 2021 Avanseus Holdings Pte. Ltd. All rights reserved.

Once the above changes are made in all the conf files, restart the instance in this
order.

1) Config servers,

2) Sharded clusters and

3) Query router.

f. To enable sharding at Database level, follow the below step:

>sh.enableSharding("testdb");

Once you enable sharding for a database, MongoDB assigns a primary shard for that
database where MongoDB stores all data in that database.

g. Check sharding status using sh.status() command, You can see the database as
being sharded and can check to which server it is sharded to.

>sh.status();

Output of above command would look like below:

--- Sharding Status ---

 sharding version: {

 "_id" : 1,

 "minCompatibleVersion" : 5,

 "currentVersion" : 6,

 "clusterId" : ObjectId("60df2de46f468b83fa1d5105")

 }

 shards:

 { "_id" : "sharda", "host" :
"sharda/172.31.31.7:27000,172.31.31.6:27000,172.31.31.5:27000", "state" : 1 }

 { "_id" : "shardb", "host" :
"shardb/172.31.31.7:27100,172.31.31.6:27100,172.31.31.5:27100", "state" : 1 }

 { "_id" : "shardc", "host" :
"shardc/172.31.31.7:27200,172.31.31.6:27200,172.31.31.5:27200", "state" : 1 }

 active mongoses:

 "3.6.23" : 1

 autosplit:

 Currently enabled: yes

 balancer:

 Currently enabled: yes

 Currently running: no

 Failed balancer rounds in last 5 attempts: 5

 Last reported error: Could not find host matching read preference { mode:
"primary" } for set shardb

 Time of Reported error: Sun Jul 04 2021 15:45:03 GMT+0200 (CEST)

 Migration Results for the last 24 hours:

Page | 11 Copyright © 2021 Avanseus Holdings Pte. Ltd. All rights reserved.

 No recent migrations

 databases:

 { "_id" : "config", "primary" : "config", "partitioned" : true }

 config.system.sessions

 shard key: { "_id" : 1 }

 unique: false

 balancing: true

 chunks:

 sharda 512

 shardb 512

 shardc 512

 too many chunks to print, use verbose if you want to force print

 { "_id" : "testdb", "primary" : "sharda", "partitioned" : true }

h. To enable sharding at Collection level, add the shard key.

To enable shard on a particular collection you need to provide a shard key. Ensure
that you add the index to the field on which sharding is done.

Note: Before you can shard a collection you must first enable sharding for the
database where the collection resides.

MongoDB provides two strategies to shard collections:

i. Hashed sharding uses a hashed index of a single field as the shard key to
partition data across your sharded cluster.

> sh.shardCollection("<database>.<collection>", { <shard key field> : "hashed"
})

Consider the below example:

The sharding is performed on the Alarm collection with equipmentComponent_id
Field. Provide a shard key as equipmentComponent_id.

Create the collection Alarm.

> db.createCollection("Alarm");

Add hashed index to the euipmentComponent_id field.

> db.Alarm.createIndex({equipmentComponent_id: "hashed"});

Add the sharding key information

> sh.shardCollection("testdb.Alarm", {equipmentComponent_id : "hashed"});

Once this is done, insert the data into the Alarm table. Data will be evenly
distributed across the shards in case of hashed sharding.

ii. Range-based sharding can use multiple fields as the shard key and divides
data into contiguous ranges determined by the shard key values.

> sh.shardCollection("<database>.<collection>", { <shard key field> : 1, ... })

Page | 12 Copyright © 2021 Avanseus Holdings Pte. Ltd. All rights reserved.

Consider the below example:

The sharding is performed on the Alarm collection with equipmentComponent_id
and cause_id field

Create the collection Alarm.

> db.createCollection("Alarm");

Add an index to the equipmentComponent_id and cause_id field".

> db.Alarm.createIndex({equipmentComponent_id: 1, cause_id:1 });

Add the sharding key information.

> sh.shardCollection("canDemo.Alarm", {equipmentComponent_id : 1,
cause_id:1});

Once this is done, insert the data into the Alarm table. Data might not be evenly
distributed across the shards in the case of range-based sharding. One shard
may have data than the other shards.

	1. Objective
	2. MongoDB Sharding
	2.1. Cluster Architecture

